Pesticides in Urban Runoff & Waterways

Nan Singhasemanon

Staff Environmental Scientist

CA Department of Pesticide Regulation

Structural Pesticide Enforcement Training, Dublin 2009

Pesticide Use in Urban Areas

- Is there really that much use in urban areas?
- DPR's PUR is great for assess. Ag. uses but not urban
- How much urban compared to Ag. use?
 - → Urban Use = reported urban use + OTC sales
 - → OTC sales = total sales total reported use
- ~ ½ of pesticide use in CA occurs in urban areas
- Urban pesticide use = small but countless applications

Organophosphorus Pesticides (OPs)

- OP Monitoring in 1990's & early 2000's
 - → Urban-use pesticides can end up in urban creeks (early work in Alameda Co.)
 - → Creek levels > W.Q. standards for protection of aquatic life
 - → Toxicity to aquatic invertebrates (*Ceriodaphnia dubia*) linked mainly to two OPs diazinon & chlorpyrifos
- Main suspect Outdoor residential pesticide use
- Regional Boards began regulating discharges of these OPs to urban waterways
- Registrants voluntarily canceled residential outdoor uses
 - Diazinon & chlorpyrifos levels dropped
 - → Water column toxicity subsided

DPR Urban Pesticide Monitoring Project

DPR Urban Pesticide Monitoring Project

- In 2008, DPR initiated a monitoring study to assess the occurrence & magnitude of pesticides in urban runoff & waterways
- Dry-weather & wet-weather samples
- Areas of focus: Sacramento, S.F. Bay Area,
 Orange Co. & San Diego Co.
- 7 receiving water & 18 storm drain sites
- 64 insecticides, herbicides & degradates (7 groups)

Types of Sampling Sites

Martin Canyon/Big Canyon Cr. & 680

Dublin Storm Drain MCC010

Urban Areas w/ Ag. Sources Omitted

Lots of Urban Products & A.I.'s

- What active ingredients are used?
 - → PUR's reported urban use
 - → Residential-Use & Shelf Surveys
- How do we determine which pesticides could be a concern for water quality in urban waterways?
 - → Use Amount
 - → Number of Products
 - → Application Rate
 - → Site of Application
 - → Formulation
 - → Toxicity
 - → Physico-Chemical Characteristics

Pesticide Analytes of Interest

Analyte Group	Number of Pesticides Analyzed	Sample Matrix
Carbamates (CB)	9	Water
Dinitroanilines (DN)	7	Water
Fipronil & Degradates (FP)	6	Water
Organophosphates (OP)	15	Water
Phenoxys (PX)	4	Water
Triazines (TR)	12	Water
Pyrethroids (PY)	11	Sediment
Total	64	

Credit: Li-Ming He, Environmental Monitoring Branch, DPR 2008

DPR Urban Pesticide Monitoring Project – Water Results

- Preliminary data
- "Frequency" only
- Dry-weather: Fipronil & degradates > 2,4-D = triclopyr > diuron > simazine = dicamba > pendimethalin = carbaryl
- Storm drain sites tend to exhibit higher concentrations than receiving water sites
- Pesticides more frequently detected in Orange Co. & Sacramento areas than S.F. Bay & S.D. areas

Pesticides & Degradates in Urban Dry-Weather Flow (Drool)

Credit: Li-Ming He, Environmental Monitoring Branch, DPR 2008

Bay Area Prelim. Results (Drool)

Orange Co. Prelim. Results (Drool)

Wet Weather Prelim. Results

- Similar results to dry weather
- Higher detection frequencies for rain runoff
- Storm drains higher frequencies vs. receiving water
- Pyrethroid insecticides frequently detected in rain runoff
- Rain runoff sampling continues (weather permitting!)

Pyrethroids in Urban Sediment:

 $\underline{Bifenthrin}$ > cyfluthrin = permethrin > deltamethrin/tralomethrin > λ -cyhalothrin > cypermethrin

Findings from Other Urban Studies...

- Runoff from many CA urban areas showed frequent detections & high concentrations of:
 - → Pyrethroids
 - → Fipronil & degradates
- Toxicity in urban creek sediment growingly linked to pyrethroids
- Impervious surfaces help lead to greater offsite movement of pesticides
- Ants! Ants! Ants!

Life After OPs

- Problems w/ OP replacements
- Trading water column toxicity for sediment toxicity
 - → Pyrethroids stick to organic matter in soil/sediment
 - → More available to sediment-dwelling inverts.
- <u>Bifenthrin</u> appears to be most problematic
- Other concerns: fipronil & degradates, herbicides in water?
 - → W.Q. impacts not clear yet...

Urban Users/Sources

- Many user groups generally divided into:
 - → Licensed users
 - Pest control operators & other users that hold a QAL or QAC
 - → Non-licensed users
 - Residential users (i.e., homeowners, tenants)
 - Industrial & institutional users
 - Others

Residential Areas

- Most investigated
- Source investigations point to:
 - → Outdoor uses by both licensed & non-licensed applicators
 - → For insecticides, structural & landscape applications are likely to be important contributors
 - → Some pyrethroids found are those used almost exclusively by PCOs

Why is Mitigation Such a Challenge?

- Traditional W.Q. mitigation tools for Ag. not suited for urban setting
- Impractical? Impossible? How do you effectively control or enforce homeowner use?
- Many PCOs
- Still does not take much to be problematic –
 parts per billion parts per trillion
- Should we "fix" a.i. or address use pattern?

Why is this Important?

- State & Regional Boards have legal mandate to protect W.Q.
- Could initiate regulations & discharge permitting process based on toxicity linked to pesticides
- Municipal stormwater programs are responsible dischargers
 - → Problem they cannot control "use"
 - → Fines & vulnerable to litigation (i.e., law\$uit\$)
- DPR also has legal mandate to prevent significant adverse effects to the environment

Mitigation

- DPR's "Pyrethroid Reevaluation"
 - → Work w/ registrants
 - → Better define problem & identify potential mitigation
- Management practices are being studied & evaluated
 - → e.g., treatment types, surface material wash off, lawn irrigation management
- Urban user outreach projects by DPR & others
- U.S. EPA label changes (e.g., pre-construction termiticide treatments)
- Regional Boards likely to pursue discharge regs. & enforce permit requirements

Mitigation

- DPR to unveil new S.W. regulations this year to address both Ag. & urban W.Q. issues
 - → Basic requirements to begin addressing urban sources (will likely deal w/ structural & landscape uses)
 - → State & Regional Boards currently reviewing draft regs.
 - → <u>CACs</u> next
 - → Then <u>public review</u>
- Adopted regs. 2010?
- Compliance & enforcement of these regs. could prove vital in the improvement of urban W.Q.

Thank You...

Nan Singhasemanon

Staff Environmental Scientist/MAA Coordinator

Environmental Monitoring Branch

Surface Water Protection Program

1001 I St., Sacramento, CA 95812

minghasemanon@cdpr.ca.gov

(916) 324-4122